--- title: "nonet_ensemble classification with nonet_plot" output: html_vignette vignette: > %\VignetteIndexEntry{nonet ensemble classification with nonet plot} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- ### nonet provides ensemble capabilities for classification problems. Below example shows the step by step implementation of nonet_ensemble and nonet_plot functions in the context of classification. We have used Bank Note authentication data set to predict the output class variable using random forest and neural network models. Predictions from random forest model and neural network model are being used as inputs to the nonet_ensemble in the list form. Let's start: #### Load the required libraries ```{r} library(caret) library(ggplot2) library(nonet) ``` #### Load the banknote_authentication dataset and explore it. ```{r} dataframe <- data.frame(banknote_authentication) head(dataframe) ``` We can see above that class variable has int datatype, we need to convert it into factor so that classification models can be trained on that. #### Converting datatype of class variable into factor which have two classes Yes and No. ```{r} dataframe$class <- as.factor(ifelse(dataframe$class >= 1, 'Yes', 'No')) dataframe <- data.frame(dataframe) head(dataframe) ``` #### Spliting the dataset into train and test. ```{r} index <- createDataPartition(dataframe$class, p=0.75, list=FALSE) trainSet <- dataframe[ index,] testSet <- dataframe[-index,] ``` #### Feature selection using rfe in caret ```{r} control <- rfeControl(functions = rfFuncs, method = "repeatedcv", repeats = 3, verbose = FALSE) ``` ```{r} outcomeName <- 'class' predictors <- c("variance", "skewness", "curtosis", "entropy") ``` #### Model Training: Random forest ```{r, message = FALSE, results = "hide"} banknote_rf <- train(trainSet[,predictors],trainSet[,outcomeName],method='rf') ``` #### Model Training: neural network ```{r, message = FALSE, results = "hide"} banknote_nnet <- train(trainSet[,predictors],trainSet[,outcomeName],method='nnet') ``` Now we need to predict the outcome on testSet using the trained models #### Predictions on testSet in probabilities ```{r} predictions_rf <- predict.train(object=banknote_rf,testSet[,predictors],type="prob") predictions_nnet <- predict.train(object=banknote_nnet,testSet[,predictors],type="prob") ``` #### Predictions on testSet in raw form i.e in levels ```{r} predictions_rf_raw <- predict.train(object=banknote_rf,testSet[,predictors],type="raw") predictions_nnet_raw <- predict.train(object=banknote_nnet,testSet[,predictors],type="raw") ``` #### Create the stack of prediction probabilities for the class of Yes ```{r} Stack_object <- list(predictions_rf$Yes, predictions_nnet$Yes) ``` #### Applying naming to the Stack_object ```{r} names(Stack_object) <- c("model_rf", "model_nnet") ``` #### Convet list object into dataframe ```{r} Stack_object_df <- data.frame(Stack_object) ``` #### nonet_ensemble Now we need to apply the nonet_ensemble method by supplying list object and best model name as input. Note that We have not provided training or test outcome labels to compute the weights in the weighted average ensemble method, which is being used inside the none_ensemble. Thus it uses best models prediction to compute the weights in the weighted average ensemble. ```{r} prediction_nonet_raw <- nonet_ensemble(Stack_object, "model_nnet") ``` #### Convert probabilities into factor levels. ```{r} prediction_nonet <- as.factor(ifelse(prediction_nonet_raw >= "0.5", "Yes", "No")) ``` #### Evaluation Matrix: nonet Here Confusion matrix is being used to evaluate the performance of nonet, rf and nnet. ```{r} nonet_eval <- confusionMatrix(prediction_nonet, testSet[,outcomeName]) nonet_eval_rf <- confusionMatrix(predictions_rf_raw,testSet[,outcomeName]) nonet_eval_nnet <- confusionMatrix(predictions_nnet_raw,testSet[,outcomeName]) nonet_eval_df <- data.frame(nonet_eval$table) nonet_eval_rf_df <- data.frame(nonet_eval_rf$table) nonet_eval_nnet_df <- data.frame(nonet_eval_nnet$table) ``` #### Result Plotting: nonet_plot Results can be plotted using the nonet_plot function. nonet_plot is being designed to provided different plot_type options to the user so that one can plot different visualization based on their needs. ##### nonet_plot for the result of nonet_ensemble models predictions ```{r, warning = FALSE} plot_first <- nonet_plot(nonet_eval_df$Prediction, nonet_eval_df$Reference, nonet_eval_df, plot_type = "point") plot_first ``` ##### nonet_plot for the result of random forest model's predictions ```{r, warning = FALSE} plot_second <- nonet_plot(nonet_eval_rf_df$Prediction, nonet_eval_rf_df$Reference, nonet_eval_rf_df, plot_type = "boxplot") plot_second ``` ##### nonet_plot for the result of neural network model's predictions ```{r, warning = FALSE} plot_third <- nonet_plot(nonet_eval_nnet_df$Prediction, nonet_eval_nnet_df$Reference, nonet_eval_nnet_df, plot_type = "density") plot_third ``` ### Conclusion Above it can be seen that nonet_ensemble and nonet_plot can serve in a way that one do not need to worry about the outcome variables labels to compute the weights of weighted average ensemble solution.