Package: nonet 0.4.0

nonet: Weighted Average Ensemble without Training Labels

It provides ensemble capabilities to supervised and unsupervised learning models predictions without using training labels. It decides the relative weights of the different models predictions by using best models predictions as response variable and rest of the mo. User can decide the best model, therefore, It provides freedom to user to ensemble models based on their design solutions.

Authors:Aviral Vijay [aut, cre], Sameer Mahajan [aut]

nonet_0.4.0.tar.gz
nonet_0.4.0.zip(r-4.5)nonet_0.4.0.zip(r-4.4)nonet_0.4.0.zip(r-4.3)
nonet_0.4.0.tgz(r-4.4-any)nonet_0.4.0.tgz(r-4.3-any)
nonet_0.4.0.tar.gz(r-4.5-noble)nonet_0.4.0.tar.gz(r-4.4-noble)
nonet_0.4.0.tgz(r-4.4-emscripten)nonet_0.4.0.tgz(r-4.3-emscripten)
nonet.pdf |nonet.html
nonet/json (API)

# Install 'nonet' in R:
install.packages('nonet', repos = c('https://aviralvijay-gslab.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/gslabdev/nonet/issues

Datasets:

On CRAN:

3.35 score 1 stars 15 scripts 122 downloads 2 exports 145 dependencies

Last updated 6 years agofrom:304487e495. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 22 2024
R-4.5-winNOTEOct 22 2024
R-4.5-linuxNOTEOct 22 2024
R-4.4-winNOTEOct 22 2024
R-4.4-macNOTEOct 22 2024
R-4.3-winNOTEOct 22 2024
R-4.3-macNOTEOct 22 2024

Exports:nonet_ensemblenonet_plot

Dependencies:askpassbackportsbase64encbitbit64blobbroombslibcachemcallrcaretcellrangerclassclicliprclockcodetoolscolorspaceconflictedcpp11crayoncurldata.tableDBIdbplyrdiagramdigestdplyrdtplyre1071evaluatefansifarverfastmapfontawesomeforcatsforeachfsfuturefuture.applygarglegenericsggplot2glmnetglobalsgluegoogledrivegooglesheets4gowergtablehardhathavenhighrhmshtmltoolshttridsipredisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmemoisemgcvmimeModelMetricsmodelrmunsellnlmennetnumDerivopensslparallellypillarpkgconfigplyrprettyunitspROCprocessxprodlimprogressprogressrproxypspurrrR6raggrandomForestrappdirsRColorBrewerRcppRcppEigenreadrreadxlrecipesrematchrematch2reprexreshape2rlangrlistrmarkdownrpartrstudioapirvestsassscalesselectrshapeSQUAREMstringistringrsurvivalsyssystemfontstextshapingtibbletidyrtidyselecttidyversetimechangetimeDatetinytextzdbutf8uuidvctrsviridisLitevroomwithrxfunXMLxml2yaml

nonet_ensemble classification with nonet_plot

Rendered fromnonet_ensemble_class.Rmdusingknitr::rmarkdownon Oct 22 2024.

Last update: 2019-01-15
Started: 2018-12-31

nonet_ensemble Clustering with nonet_plot

Rendered fromnonet_ensemble_clustering.Rmdusingknitr::rmarkdownon Oct 22 2024.

Last update: 2019-01-15
Started: 2018-12-31

nonet_ensemble regression with nonet_plot

Rendered fromnonet_ensemble_reg.Rmdusingknitr::rmarkdownon Oct 22 2024.

Last update: 2019-01-15
Started: 2018-12-31