Package: nonet 0.4.0

nonet: Weighted Average Ensemble without Training Labels

It provides ensemble capabilities to supervised and unsupervised learning models predictions without using training labels. It decides the relative weights of the different models predictions by using best models predictions as response variable and rest of the mo. User can decide the best model, therefore, It provides freedom to user to ensemble models based on their design solutions.

Authors:Aviral Vijay [aut, cre], Sameer Mahajan [aut]

nonet_0.4.0.tar.gz
nonet_0.4.0.zip(r-4.5)nonet_0.4.0.zip(r-4.4)nonet_0.4.0.zip(r-4.3)
nonet_0.4.0.tgz(r-4.4-any)nonet_0.4.0.tgz(r-4.3-any)
nonet_0.4.0.tar.gz(r-4.5-noble)nonet_0.4.0.tar.gz(r-4.4-noble)
nonet_0.4.0.tgz(r-4.4-emscripten)nonet_0.4.0.tgz(r-4.3-emscripten)
nonet.pdf |nonet.html
nonet/json (API)

# Install 'nonet' in R:
install.packages('nonet', repos = c('https://aviralvijay-gslab.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/gslabdev/nonet/issues

Datasets:

On CRAN:

3.35 score 1 stars 15 scripts 176 downloads 2 exports 145 dependencies

Last updated 6 years agofrom:304487e495. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 21 2024
R-4.5-winNOTENov 21 2024
R-4.5-linuxNOTENov 21 2024
R-4.4-winNOTENov 21 2024
R-4.4-macNOTENov 21 2024
R-4.3-winNOTENov 21 2024
R-4.3-macNOTENov 21 2024

Exports:nonet_ensemblenonet_plot

Dependencies:askpassbackportsbase64encbitbit64blobbroombslibcachemcallrcaretcellrangerclassclicliprclockcodetoolscolorspaceconflictedcpp11crayoncurldata.tableDBIdbplyrdiagramdigestdplyrdtplyre1071evaluatefansifarverfastmapfontawesomeforcatsforeachfsfuturefuture.applygarglegenericsggplot2glmnetglobalsgluegoogledrivegooglesheets4gowergtablehardhathavenhighrhmshtmltoolshttridsipredisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmemoisemgcvmimeModelMetricsmodelrmunsellnlmennetnumDerivopensslparallellypillarpkgconfigplyrprettyunitspROCprocessxprodlimprogressprogressrproxypspurrrR6raggrandomForestrappdirsRColorBrewerRcppRcppEigenreadrreadxlrecipesrematchrematch2reprexreshape2rlangrlistrmarkdownrpartrstudioapirvestsassscalesselectrshapeSQUAREMstringistringrsurvivalsyssystemfontstextshapingtibbletidyrtidyselecttidyversetimechangetimeDatetinytextzdbutf8uuidvctrsviridisLitevroomwithrxfunXMLxml2yaml

nonet_ensemble classification with nonet_plot

Rendered fromnonet_ensemble_class.Rmdusingknitr::rmarkdownon Nov 21 2024.

Last update: 2019-01-15
Started: 2018-12-31

nonet_ensemble Clustering with nonet_plot

Rendered fromnonet_ensemble_clustering.Rmdusingknitr::rmarkdownon Nov 21 2024.

Last update: 2019-01-15
Started: 2018-12-31

nonet_ensemble regression with nonet_plot

Rendered fromnonet_ensemble_reg.Rmdusingknitr::rmarkdownon Nov 21 2024.

Last update: 2019-01-15
Started: 2018-12-31